B.Sc. COMPUTER SCIENCE

(Honours)

CURRICULUM FRAMEWORK AND SYLLABI

(Under Choice Based Credit System - Outcome Based Education)

(For the students joining in the

Academic year 2024 – 2025 and afterwards)

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS THE GANDHIGRAM RURAL INSTITUTE

(Deemed to be University) Gandhigram - 624 302 Dindigul District Tamil Nadu

THE GANDHIGRAM RURAL INSTITUTE

(Deemed to be University)

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

B. Sc. COMPUTER SCIENCE

(Honours)

(Under Choice Based Credit System - Outcome Based Education)

Vision

To provide quality-assured academic, research and extension services in the domain of Computer Science and Applications, to promote dissemination of knowledge in Information and Communication Technologies for Rural Development.

Mission

Empower the rural youth by transforming them into proficient and socially responsible computer professionals and cater them to the envisaged demand in the operational and functional domains of the industries and service sectors.

Graduate Attribute

The graduates of our institute are expected to possess the following attributes.

1. Informed

The graduates of GRI are well-informed and are able to retrieve, analyse and assimilate complex information. They understand the local and global issues and are able to apply their knowledge. They are able to work in tandem with the rural community.

- 2. Problem solver
 - The graduates of GRI have the ability to work on development issues. They are capable of being creative, logical and critical thinking which in turn help them to respond to challenges and opportunities effectively. They are also capable of making and implementing decisions.
- 3. Active learners and critical thinkers
 - Graduates of this university are active learners and are capable of critically analyzing issues. They are capable of undertaking critical enquiry and reflection, find and evaluate information using a variety of sources and technologies. They do possess the attitude of acknowledging the works and ideas of others.
- 4. Effective communication
 - The graduates have good communication skills and are capable of articulating their ideas effectively. They can negotiate and engage with people in varied settings.
- 5. Rural minded
 - The graduates of GRI are well-informed and are able to retrieve, analyse and assimilate complex information. They understand the local and global issues and are able to apply their knowledge. They are able to work in tandem with the rural community.

THE GANDHIGRAM RURAL INSTITUTE

(Deemed to be University)

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

B. Sc. COMPUTER SCIENCE

(Honours)

(Under Choice Based Credit System - Outcome Based Education)

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- PEO 1: To prepare the graduates with expected domain knowledge to be employed in public and Information Technology (IT) enabled services.
- PEO 2: To demonstrate needed skill in Computer Science and other inter-disciplinary areas.
- PEO 3: To train the students to apply current tools and technologies to develop software solutions for social needs.
- PEO 4: To prepare the students to continue the process of lifelong learning through professional activities that contributes to personal and social development.
- PEO 5: To motivate the students to become entrepreneurs in IT enabled ventures.

PROGRAMME OUTCOME (PO)

- PO 1: To become knowledgeable in the subject of Computer Science and Allied Subjects that are relevant and appropriate to the domain.
- PO 2: To design and develop software solutions to cater to the industrial requirements.
- PO 3: To develop communication skill to present ideas effectively and efficiently.
- PO 4: To equip the students to the changing needs and motivate them to take-up masters and research programmes.
- PO 5: To inculcate human, professional and ethical values to become a socially responsible citizen.

PROGRAMME SPECIFIC OUTCOME (PSO)

- PSO 1: Demonstrate the working principles of various hardware and software of a computer system.
- PSO 2: Acquire knowledge in programming and understand the basic concepts and techniques in computer domain.
- PSO 3: Analyse and identify the customer requirements to develop software solutions.
- PSO 4: Develop software solutions for real life problems by applying latest technologies.
- PSO 5: Empower the students with technical and other soft skills for successful career, entrepreneur and higher studies.

Mapping of PEOs with PSOs & POs:

PEO Vs.			PO					PSO		
PO&PSO	1	2	3	4	5	1	2	3	4	5
PEO1	3	3	3	2	2	3	3	3	3	3
PEO2	3	3	2	2	3	3	3	3	3	3
PEO3	3	3	2	2	2	3	3	3	3	3
PEO4	3	3	3	3	3	3	3	3	3	3
PEO5	3	3	2	2	2	3	3	3	3	3

Strongly Correlating (S) - 3 marks

Moderately Correlating (M) - 2 marks

Weakly Correlating (W) - 1 mark

No Correlation (N) - 0 mark

CO & PO ATTAINMENT RUBRICS

Direct Assessment:

i) CFA & ESE - 30 %ii) Assignment/Reports/Case - 40%Study

Indirect Assessment:

i) Exit Survey - 30 %

THE GANDHIGRAM RURAL INSTITUTE (DEEMED TO BE UNIVERSITY)

Ministry of Education (Shiksha Mantralaya), Govt. of India
Accredited by NAAC with A Grade (3rd Cycle)

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

B. Sc. COMPUTER SCIENCE

(Honours)

(Under Choice Based Credit System - Outcome Based Education)

CURRICULUM FRAMEWORK AND SYLLABI

(For the students joining in 2024 – 2025 and afterwards)

Commenced	Title of the Common	C 114	Н	ours	M	ax. Mar	ks
Course code	Title of the Course	Credits	Theory	Practical	CFA	ESE	Total
	SEMESTI	ER I					
24CSUC1101	Core Major - 1: Programming in C	3	3	-	40	60	100
24CSUC1102	Core Major - Lab 1: C Programming	1	-	3	60	40	100
24MAUB1104	Core Minor - 1: Mathematics - I: Foundations of Mathematical Analysis and Computation	4	4	-	40	60	100
	Multidisciplinary - I	3	3	-	40	60	100
24ENUA1101	Ability Enhancement Course (AEC): Essential English: Basic	3	3	-	40	60	100
24TAUS1101/ 24MLUS1101/ 24HIUS1101	Skill Enhancement Course: Indian Language (Tamil/Malayalam/Hindi) - I	3	3	-	40	60	100
24FSUV1001	Value Added Course - 1: Environmental Science	2	2	-	50	-	50
24FAUV1001/ 24GTUV1002	Value Added Course - 2: Heritage & Culture History of India / Shanthi Sena	2	2	-	50	-	50
	Total	21	20	3			
	SEMESTE	R II					
24CSUC1203	Core Major - 2: Data Structures	3	3	-	40	60	100
24CSUC1204	Core Major - Lab 2: Data Structures	1	-	3	60	40	100
24MAUB1209	Core Minor - 2: Mathematics - II: Statistical Analysis and Mathematical Calculus	4	4	-	40	60	100
	Multidisciplinary - II	3	3	-	40	60	100
24ENUA1202	Ability Enhancement Course (AEC): Essential English: Intermediate	3	3	-	40	60	100
24TAUS1202/ 24MLUS1202/ 24HIUS1202	Skill Enhancement Course: Indian Language (Tamil/Malayalam/Hindi) - II	3	3	-	40	60	100
24PEUV1001	Value Added Course - 3: Yoga & Fitness	2	-	2	50	-	50
24GTUV1001	Value Added Course - 4: Let us Know Gandhi	2	2	-	50	-	50
24TAUS0004/ 24MLUS0004/ 24HIUS0004/	Skill Enhancement Course: Functional Tamil/Malayalam/Hindi	2	2	-	50	-	50
	Total	23	20	5			

Course code	Course and Title of the Course		H	ours	N	Aax. Mar	·ks
Course code	Title of the Course	Credits	Theory	Practical	CFA	ESE	Total
	SEMESTER	III					
24CSUC2105	Core Major - 3: Python Programming	3	3	-	40	60	100
24CSUC2106	Core Major - Lab 3: Python Programming	1	-	3	60	40	100
24CSUC2107	Core Major - 4: Operating System	3	3	-	40	60	100
24CSUC2108	Core Major - Lab 4: Operating System	1	-	3	60	40	100
24PHUB2103	Core Minor - 3 : Physics - I for Computer Science: Digital Principles	4	4	-	40	60	100
	Multidisciplinary - III (Online Course)	3	3	-	40	60	100
24ENUA2103	Ability Enhancement Course (AEC): Essential English: Advanced	3	3	-	40	60	100
24TAUS2103/ 24MLUS2103/ 24HIUS2103	Skill Enhancement Course: Indian Language (Tamil/Malayalam/Hindi) - III	3	3	-	40	60	100
24EXUE2101	Extension: Village Placement Programme	2	-	-	50	-	50
	Total	23	19	6			
	SEMESTER	IV					
24CSUC2209	Core Major - 5: Java Programming	3	3	-	40	60	100
24CSUC2210	Core Major - Lab 5: Java Programming	1	-	3	60	40	100
24CSUC2211	Core Major - 6: Computer Networks	3	3	-	40	60	100
24CSUC2212	Core Major - Lab 6: Computer Networks	1	-	3	60	40	100
24CSUC2213	Core Major - 7: Software Engineering	4	4	-	40	60	100
24PHUB2204	Core Minor - 4: Physics – II for Computer Science: Microprocessor and Assembly Language Programming	3+1	3	3	40	60	100
24ENUA2204	Ability Enhancement Course (AEC): Science Communication	3	3	-	40	60	100
24EXUE2201	Extension: Community Engagement	2	2	-	50	-	50
	Total	21	18	9			
	SEMESTER	V					
24CSUC3114	Core Major - 8: Database Management System	3	3	-	40	60	100
24CSUC3115	Core Major - Lab 7: DBMS	1	-	3	60	40	100
24CSUC3116	Core Major - 9: Cloud Computing	4	4	-	40	60	100
24CSUC3117	Core Major - 10: Mobile Computing	4	4	-	40 60		100
24GIUB3105	Core Minor - 5: Geographical Information System	3+1	3	3	40 60		100
24CSUC3118	Internship	2	-	-	50 -		50
24CSUE3101	Field Study: Field Visit for ITRD	2	1	1	50	-	50
	Total	20	15	7			

Course code	Title of the Course	Credits	Hours		Max. Marks		
Course code	The of the Course	Credits	Theory	Practical	CFA	ESE	Total
	SEMESTE	R VI					
24CSUC3219	Core Major - 11: Web Programming	3	3	-	40	60	100
24CSUC3220	Core Major - Lab 8 : Web Programming	1	-	3	60	40	100
24CSUC3221	Core Major - 12: Introduction to Artificial Intelligence	4	4	-	40	60	100
24CSUC3222	Core Major - 13: Information Security	4	4	-	40	60	100
24CSUC3223	Core Major - 14: Data Mining	4	4	-	40	60	100
24GIUB3206	Core Minor - 6: Remote Sensing	3+1	3	3	40	60	100
24CSUC3224	Project / Core Major - 15: Mobile Application Development	4 4	- 4	4 -	40 40	40+20 60	*100 100
	Total	24	18/22	10/6			
	SEMESTEI	R VII		L L			
24CSUC4125	Core Major - 16: Advanced Algorithms	4	4	-	40	60	100
24CSUC4126	Core Major - 17: Advanced Java Programming	3	3	-	40	60	100
24CSUC4127	Core Major - Lab 9: Advanced Java & Algorithms	1	-	3	60	40	100
24CSUC4128	Core Major - 18: Machine Learning using Python	3	3	-	40	60	100
24CSUC4129	Core Major - Lab 10: Machine Learning using Python	1	-	3	60	40	100
24COUB4107	Core Minor - 7: Accounting for Decision Making	4	4	-	40	60	100
24MAUB4108	Core Minor - 8: Maths I: Mathematical Foundation for Computer Science	4	4	-	40	60	100
	Total	20	18	6			
	SEMESTER	RVIII					
24CSUC4230	Core Major - 19: Advanced Database Management Systems	3	3	-	40	60	100
24CSUC4231	Core Major - Lab 11: Advanced DBMS	1	-	3	60	40	100
24CSUC4232	Core Major - 20: Deep Learning for Computer Vision	3	3	-	40	60	100
24CSUC4233	Core Major - Lab 12: DLCV	1	-	3	60	40	100
24CSUC4234	Project	12	-	16	100	100+100	#300
	Total	20	6	22			
	Total Credits I to VIII semester	172		<u> </u>			

Project Evaluation:

	**	#
Internal	40	120
External	40	120
Joint Viva	20	60

$\label{eq:multidisciplinary-III:} \\ Courses for B.Sc.\ Computer\ Science\ (Honours)\ in\ MOOC\ /\ Spoken\ Tutorials\ based\ on\ the\ availability$

S. No.	Name of the Course	Semester
1.	Advanced C	I
2.	Ethical Hacking	I
3.	CSS	П
4.	Computer Graphics	П
5.	HTML	III
6.	The Joy of Computing using Python	III
7.	Introduction to Computers	IV
8.	Software Engineering	IV
9.	Javascript	V
10.	Cloud Computing	V
11.	Java	VI
12.	AI: Search Methods for Problem Solving	VI

SEMESTER I

Course Code	24CSUC1101				
& Title	Core Major 1: Programmir	Core Major 1: Programming in C			
			Credits: 3		
Class	B.Sc. (Computer Science)	Semester	I		
Course	The Course aims to				
Objectives	 Impart the Principles of C Language 				
	Lay the foundation to learn other advanced	Lay the foundation to learn other advanced programming languages			
	 Motivate the students to develop projects v 	ising C			
Cognitive	K1: Remembering the C language Programming	constructs			
Level	K2: Understand the logic behind in writing any p	orograms.			
	K3: Apply the learnt syntax to write programs.				
	K4: Analyze the output of the programme				
	K5: Create a program for real world problems.				

UNIT	CONTENTS	Lecture Schedule
	Program Structure and Fundamentals	
	Program Structure: Identifiers – Data Types – Integer – Float –	
I	Character – Constants – Variables.	12
	Operators and Expressions, Managing Input and Output	
	Operations.	
	Control Structures	
	Decision Making and Branching: if Statement – if else	
II	Statement – Nested if else Statements – ?: operator – switch	13
11	Statement – <i>go to</i> Statement.	13
	Loop Statement: for Statement – do while Statement – while	
	do Statement.	
	Arrays and String	
	Arrays: Definition – Declaration – Entering Values in Arrays –	
III	Manipulating Arrays.	12
	String: Declaring, Initializing, Printing and Reading strings,	
	String manipulation functions.	
	Functions and Structures& Union	
	Functions: Defining User defined function – Accessing a	
IV	function Passing arguments to a function – Recursion.	13
	Structure& Union: Defining – Declaring – Initialization –	
	Structures and Functions – Array of structures – Union.	
	Pointers and File Management	
V	Pointers: Understanding Pointers – Pointers and Functions - File:	14
	Defining – Opening and Closing –Input and output operations –	17
	File Random Access.	
	Total Conduct Hours	64

1. E. Balagurusamy, Programming in ANSI C, 8/e Tata McGraw Hill, 2019.

References:

- 1. Stephen G. Kochan, Programming in C, 4th Ed., Pearson Education, 2015.
- 2. Byron Gottfried, Programming with C, 2ndEd., TMH publications, 2006.
- 3. Kalavathi. P, C A Text for Beginners, Bonfring Publications, Tamil Nadu, 2014

E- Resources:

- 1. https://www.tutorialspoint.com/cprogramming/index.htm
- 2. https://www.w3schools.in/c-tutorial/
- 3. http://www.learn-c.org/en/Welcome

Course	On successful completion of the course, the students will be able to
Outcomes	
	CO1: Develop logic for problem solving through programming
	CO2: Decide on the appropriate C data types for problem solving
	CO3: Exhibit ability to contextually and optimally use the C programming
	constructs - decision making, iteration and looping
	CO4: Develop C programs with the concept of modularity using functions
	CO5: Provide computational solutions for real-time problems using C
	Programming

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	2	3
CO2	2	2	3	2	3
CO3	3	2	1	3	3
CO4	3	3	3	3	3
CO5	1	3	3	3	3

Course Code & Title	24CSUC1102 Core Major - Lab 1: C Programming Credit:				
Class	B.Sc. (Computer Science)	Semester	I		
Course Objective	Provide hands—on training in C Programming	 Give a strong foundation on the structured programming using C language. Provide hands—on training in C Programming Train the students to implement various programming concepts and write C 			
Cognitive Level	K1 – K5				

CI No	CONTENTS	No. of		
Sl. No.		Hours		
	C Programming with			
1.	Control structures if, nested if, for, while and do while			
2.	Array handling – Two and Three dimensional array	48		
3.	Pointers	40		
4.	Functions – Various function operations and recursive function			
5.	Structure and Union			
6.	File handling – read and write operations			
	Total Conduct Hours	48		
Course	On successful completion of the course, the students will be able to			
Outcomes				
	CO1: Analyse and understand the various programming constructs thr	ough simple		
	C programs			
	CO2: Write the C programs using control structures			
	CO3: Trace the execution of programs and debug the programs			
	CO4: Implement programs with pointers and arrays, perform pointer arithmetic,			
	and use the pre-processor statements			
	CO5: Exhibit ability to handle files			

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	2	3
CO2	2	2	3	2	3
CO3	3	2	2	3	3
CO4	3	3	3	3	3
CO5	1	3	3	3	3

Course Code & Title	24MAUB1104 Core Minor 1: Mathematics - I Foundations of Mathematical Analysis and Computation				
	Computation		Credits: 4		
Class	B.Sc. (Computer Science)	Semester	I		
The syllabus will be provided by the respective department					

Course Code & Title	Multidisciplinary - I		
			Credits: 3
Class	B.Sc. (Computer Science)	Semester	I
The syllabus will b	e provided by the respective department		

Course Code &	24ENUA1101				
Title	Ability Enhancement Course(AEC) - Essential English: Basic				
	Credits: 3				
Class	B.Sc. (Computer Science) Semester I				
The syllabus will be	The syllabus will be provided by the respective department				

Course Code &	24TAUS1101 / 24MLUS1101 / 24HIUS1101				
Title	Skill Enhancement Course (AEC):				
	Indian language (Tamil/Malayalam/Hindi) - I				
			Credits: 3		
Class	B.Sc. (Computer Science) Semester I				
The syllabus will be provided by the respective department					

Course Code & Title	24FSUV1001 Value Added Course - 1: Environmental Science			
	Credits:			
Class	B.Sc. (Computer Science)	Semester	I	
The syllabus will	be provided by the respective department			

Course Code & Title	24FAUV1001 / 24GTUV1002 Value Added Course - 2: Heritage and Culture History of India / Shanthi Sena				
			Credits: 2		
Class	B.Sc. (Computer Science)	Semester	I		
The syllabus will	The syllabus will be provided by the respective department				

SEMESTER II

Course Code & Title	24CSUC1203 Core Major - 2: Data Structures				
			Credits: 3		
Class	B.Sc. (Computer Science)	Semester	II		
Course Objectives	 The Course aims to Explain the design and implementation of various basic and advanced data structures. Describe various technique for representation of the data in the real world Prepare the students to choose the appropriate representation of data structures and their applications 				
Cognitive Level	_		 structures and their applications K1: Define the types of data structure K2: Describe the implementation of data structures K3: Identify the appropriate data structure for solving real-world problems 		

UNIT	CONTENTS	Lecture Schedule
I	Introduction, Arrays Introduction: Definitions-Concept of Data Structures-Overview of Data Structures-Implementation of Data Structures. Arrays: Definition-Terminology-One Dimensional Array-Multi Dimensional Array.	12
II	Searching, Sorting Searching: Linear Search-Binary Search. Sorting: Bubble Sort-Quick Sort-Merge Sort-Heap Sort.	13
Ш	Linked List Linked List: Definition- Single Linked List-Circular Linked List-Double Linked List-Circular Double Linked List.	13
IV	Stacks, Queues Stacks: Introduction-Definition-Representation of a Stack-Operation on Stacks. Queues: Introduction-Definition-Representation of Queues-Various Queue Structure.	13
V	Tables: Rectangular Table - Jagged Table - Inverted Table - Hash Table. Trees: Basic Terminology - Definition and Concepts - Representation of Binary Tree - Operation on a Binary Tree - Binary Search Tree.	13
	Total Conduct Hours	64

1. Debasis Samanta, "Classic Data Structures", Second Edition, PHI Learning Pvt, Ltd, Second Edition, 2018, Chapters 1, 2, 3, 4, 5, 6 & 7

References:

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Pearson Education Asia, 2nd Edition, 2016.
- 2. Reema Thareja, "Data structures with C", Tata Mc Graw Hill, 2nd Edition, 2014.

Course On succomes CO1:

On successful completion of the course, the students will be able to

CO1: Describe the representation of single dimensional and multidimensional arrays.

CO2: Discuss the Computational efficiency of the Searching and Sorting.

CO3: Formulate the data representation using linked list and its variants.

CO4: Demonstrate primitive operations of Stacks and Queues.

CO5: Implementation of Trees and Tables and perform various operations on these data structure.

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	1	3	3
CO2	3	3	1	2	3
CO3	3	3	1	1	3
CO4	3	3	1	1	3
CO5	3	3	1	2	3

Course Code & Title	24CSUC1204 Core Major - Lab 2: Data Structures				
			Credit: 1		
Class	B.Sc. (Computer Science)	Semester	II		
Course Objectives	structures. • Describe various techniques real world.	 The Course aims to Explain the design and implementation of various basic and advanced data structures. Describe various techniques for representation of the data in the real world. Prepare the students to choose the appropriate representation of data structures 			
Cognitive Level	K1 – K5				

Sl. No.	CONTENTS	Hours of Work
1.	Array	
2.	String Operations	
3.	Sorting and Searching	
4.	Stack - Creation, Push and Pop, Conversion and evaluation of	
	Prefix and Postfix expression	10
5.	Queues – Creation, Insertion, Deletion	48
6.	Linked list – Creation, Insertion and Deletion using Singly Linked	
	List, Circular List and Doubly - Linked list.	
7.	Binary Trees – Creation, Tree traversal	
8.	Binary Search Tree – Creation, Searching and Deleting an element	
	Total Conduct Hours	48
Course	On completion of the course, students will be able to	
Outcomes		
	CO1: Implementation of array functions	
	CO2: Write string operations and sorting & searching algorithm	
	CO3: Implement by using stack and queues	
	CO4: Learn to understand linked list	
	CO5: Develop a simple tree traversal	

CO VsPSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2
CO2	3	3	3	2	2
CO3	3	3	3	2	2
CO4	3	3	3	1	2
CO5	3	3	3	3	2

Course Code	24MAUB1209		
& Title	Core Minor - 2: Mathematics - II Statistical Analysis and Mathematical		ematical
	Calculus		
			Credits: 4
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will be provided by the respective department			

Course Code &	Multidisciplinary - II		
Title			Credits: 3
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will	The syllabus will be provided by the respective department		

Course Code & Title	24ENUA1202 Ability Enhancement Course(AEC): Essential	English - Interi	mediate
	•	0	Credits: 3
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will be provided by the respective department			

Course Code &	24TAUS1202 / 24MLUS1202 / 24HIUS1202		Credits: 3
Title	Skill Enhancement Course (AEC): Indian language		
	(Tamil/Malayalam/Hindi) - II		
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will be provided by the respective department			

Course Code & Title	24PEUV1001 Value Added Course - 3: Yoga & Fitness		
	_		Credits: 2
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will be provided by the respective department			

Course Code & Title	24GTUV1001 Value Added Course - 4: Let us Know Gandhi		
			Credits: 2
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will be provided by the respective department			

Course Code &	24TAUS0004 / 24MLUS0004 / 24HIUS0004		
Title	Skill Enhancement Course: Functional Tam	il/Malayalam/H	Iindi
			Credits: 2
Class	B.Sc. (Computer Science)	Semester	II
The syllabus will be provided by the respective department			

SEMESTER III

Course Code & Title	24CSUC2105 Core Major - 3: Python Programming		
Class	B.Sc. (Computer Science)	Semester	Credits: 3
Course	The Course aims to		
Objectives	 To develop logical thinking, problem using Python. To understand the data structures of P tuples. To familiarize the usage of Python Libra 	ython namely lists, di	
Cognitive Level	K1: Recall the basic definitions of Programming Languages		
Level	K2: Summarize the knowledge in programming		
	K3: Prepare programs related to their field us	sing Python language	

UNIT	CONTENTS	Lecture Schedule
I	Introduction Introduction to Python: Introduction – Python overview – Getting started – Comments – Python identifiers – Reserved keywords – Variables – Standard data types – Operators – Statements and Expressions – String operations – Boolean expressions. Control Statements: The for loop – while statement – if-elif-else statement – Input from keyboard.	12
II	Strings: Strings - Compound data type - len function - String slices - String traversal - Escape characters - String formatting operator - String formatting functions. Tuples: Tuples - Creating tuples - Accessing values in tuples Basic tuple operations - Built-in tuple functions. Lists: Values and accessing elements - Traversing a list - Deleting elements from list - Built-in list operators & methods. Dictionaries: Creating dictionary - Accessing values in dictionary - Updating dictionary - Deleting elements from dictionary - Operations in dictionary - Built-in dictionary methods.	13
Ш	Functions - Files and Exceptions Functions: Introduction - Built-in functions - User defined functions - Function Definition - Function Call - Type conversion - Type coercion - Python recursive function. Files and Exceptions: Introduction to File Input and Output - Writing Structures to a File - Using loops to process files Processing Records - Exception.	12

	Data Manipulation Tools & Softwares	
	Numpy: Installation - Ndarray - Basic Operations -Indexing, Slicing,	
	and Iterating - Shape Manipulation - Array Manipulation - Structured	
	Arrays -Reading and Writing Array Data on Files.	
	Pandas: The pandas Library: An Introduction - Installation -	
IV	Introduction to pandas Data Structures - Operations between Data	14
	Structures - Function Application and Mapping - Sorting and Ranking -	
	Correlation and Covariance - —Not a Number Data - Hierarchical	
	Indexing and Leveling –	
	Reading and Writing Data: CSV or Text File - HTML Files - Microsoft	
	Excel Files.	
	Data Analysis with Python	
	Data Analysis with Python: Importing Datasets: Cleaning and	
	Preparing the Data: Identify and Handle Missing Values - Data	
\mathbf{V}	Formatting.	13
	Data Visualization: Matplotlib Architecture - pyplot - Plotting with	
	pandas and seaborn: Line, Bar, Histogram, Density, Scatter charts -	
	Python visualization tools.	
Total Conduct Hours		

- 1. Python: The Complete Reference, Matrin C Brown, McGrraw-Hill, 2018.
- 2. Python Programming a Modular Approach with Graphics, Database, Mobile, and Web Applications SheetalTaneja, Naveen Kumar Pearson Publication, 2018.
- 3. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, William McKinney, 2nd Edition, O'Reilly Media, 2017.
- 4. Data Analytics Using Python, Bharti Motwani, Wiley, 2020

References:

- 1. Charles R. Severance, Python for Everybody: Exploring Data Using Python 3, 2016.
- 2. E.Balagurusamy, Introduction to computing and problem solving using Python McGraw Hill Publication, 2016.
- 3. Mark Summerfield, Programming in Python 3: A Complete Introduction to the Python Language, 2nd Ed., Addison Wesley Professional, 2010.
- 4. Mark Lutz, Learning Python, 5th Ed., 2013.
- 5. Welsey J. Chun, Core Python Programming, Prentice Hall, 2001.

E-References.

- 1. https://freepdf-books.com/impractical-python-projects-playful-programming-activitiesto-make-yousmarter-book-of-2019/.
- $2. \ https://freepdf-books.com/fundamentals-of-python-first-programs-second-editionbook-of-2019.$
- 3. https://docs.python.org 4. http://www.diveintopython.org.
- 4. https://www.learnpython.org/.
- 5. https://www.javatpoint.com/python-tutorial.
- 6. http://nptel.ac.in/.

Course	On completion of the course, students will be able to
Outcomes	
	CO1: Understand the core elements of the Python Programming
	CO2: Resolve on the ideal usage of complex data structures
	CO3: Describe the functions and files concepts in python
	CO4: Apply the Python libraries NumPy and Pandas for problem solving
	CO5: Explain the Data Analysis and Visualization with Python

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	3	3
CO2	3	3	1	2	3
CO3	3	3	1	1	3
CO4	3	3	1	1	3
CO5	3	3	1	2	3

Course Code & Title	24CSUC2106 Core Major - Lab – 3: Python Programming		
		0 0	Credit: 1
Class	B.Sc. (Computer Science)	Semester	III
Course	The Course aims to		
Objectives	To develop higher-order programming skills in core Python.		
	To apply the theoretical elements of Python for problem solving		
	To provide hands-on training to solve data-intense real-world problems		
Cognitive Level	K1-K3		

Sl. No.	CONTENTS	No. of Hours
	PYTHON PROGRAMMING	
1.	Decision Making and Looping statements.	
2.	Arithmetic and Relational Operators on Strings.	
3.	Built-In String Functions.	
4.	Create and Access Strings and Substrings (using Indexing and	
	Slicing).	
5.	Built-In List Functions.	
6.	Create and Access Lists.	40
7.	Create and Access Tuples.	48
8.	Create and Access Dictionaries.	
9.	Built-In Dictionary Functions.	
10.	Function Definition & Function call.	
11.	Files and Exceptions.	
12.	Numpy Arrays	
13.	Pandas Libraries	
14.	Working on real-time Datasets	
15.	Data visualization	
	Total Conduct Hours	48

Course	On completion of the course, students will be able to
Outcomes	CO1: Analyse and understand the various programming constructs through simple python programs CO2: Write the python programs using control structures
	CO3: Trace the execution of programs and debug the programs
	CO4: Illustrate file concept through python programs
	CO5: Implement python programs with NumPy and Pandas

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	3	3
CO2	3	3	1	2	3
CO3	3	3	1	1	3
CO4	3	3	1	1	3
CO5	3	3	1	2	3

Course Code	24CSUC2107			
& Title	Core Major - 4: Op	Core Major - 4: Operating System		
			Credits: 3	
Class	B.Sc. (Computer Science)	Semester	III	
Course	The Course aims to			
Objectives	 Study the fundamental concepts of 	operating system.		
	Provide knowledge on process and CPU scheduling.			
	 Know about memory, file system a 	and device managemen	t.	
Cognitive	K1: Remembering the fundamental concepts in Operating Systems			
Level	K2: Understand the process and the inter-process communications			
	K3: Apply the various CPU scheduling algorithms			
	K4: Analyze the performance of the schedu	ling algorithms		
	K5: Evaluate the memory allocation based of	on page replacement al	gorithms	

UNIT	CONTENTS	Lecture Schedule
	Introduction and Process Management	
I.	Operating System Structure - Process Scheduling - Process State - Scheduling Criteria -Scheduling Algorithms - Scheduling Algorithm Performance - Process Attributes - Process Supervisor Call	12
	Inter-process Communication and Synchronization	
II.	Inter-process Communication - Process synchronization - Dead lock - deadlock detection and recovery - deadlocks avoidance - deadlock	12
	prevention.	
III.	Memory Management Single absolute partition - Single relocatable partition - Multi programming - Multiple partition - Simple paging - Simple segmentation - Segmentation with paging - Page and segment tables - Swapping	13
	Virtual Memory & File System Management	
IV.	Demand paging – Segmentation - Directories and names - Types of file system objects - File system functions - Information types - File system architecture	14
	Device Management & Security	
V.	Hardware I/O Organization – Software Organization – Devices – Authentication – Prevention – Detection – Correction – Identification – Threat Categories – Program Threats	13
	Total Conduct Hours	64

1. J.Archer Harris, John Cordani, Operating System, Mc-Graw Hills Publication, 2020.

References:

- 1. Silberschatz P.B.Galvin, Gange, "Operating System Concepts", 6th Ed, John Wiley & Sons., 2002.
- 2. H.M. Deitel, An Introduction to Operating System, Second Edition, Addison Wesley, 1990.

Course Outcomes	On completion of the course, students will be able to
Outcomes	CO1: Analyze the structure and basic components of operating system.
	CO2: Describe the process, inter-process communication and synchronization.
	CO3: Understand the memory types and segmentation process.
	CO4: Learn the concept of memory allocation and relocation during process
	execution.
	CO5: Understand the file and device management of an operating system.

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	1	3	3
CO2	3	3	1	2	3
CO3	3	3	1	1	3
CO4	3	3	1	1	3
CO5	3	3	1	2	3

Course Code & Title	24CSUC2108 Core Major - Lab 4: Operating System		
& Title	Core Major - Lab 4. Ope	crating System	Credits: 1
Class	B.Sc. (Computer Science)	Semester	III
Course	The Course aims to		
Objectives	Teach the Shell commands of Linux operating system		
	Offer hands—on training on Linux Shell Programming		
Cognitive Level	K1-K3		

Sl. No.	CONTENTS	No. of Hours
	Shell Programming	
1.	Shell Programming Vi Editor Command	
2.	Operations on Directories and Files	20
3.	Working with Editors	
4.	GUI Operations	
5.	Shell Programming	
Total Conduct Hours		20

Course	On completion of the course, students will be able to
Outcomes	
	CO1: Use shell commands, Vi editor commands and command-line arguments appropriately.
	CO2: Design and develop shell scripts with conditional, control statements and Shell functions for problem solving.
	CO3: Exhibit ability to perform the file management and multiple tasks using S hell scripts in Linux environment.

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	3	3	2	3
CO3	3	3	3	2	2

Course Code & Title	24PHUB2103 Core Minor – 3: Physics -I for Computer Science: Digital Principles			
	Credits: 4			
Class	B.Sc. (Computer Science)	Semester	III	
The syllabus will be provided by the respective department				

Course Code &	Multidisciplinary – III		
Title			Credits: 3
Class	B.Sc. (Computer Science)	Semester	III
The syllabus will	be provided by the respective department		

Course Code &	24ENUA2103		
Title	Ability Enhancement Course(AEC) - Essential English : Advanced		
			Credits: 3
Class	B.Sc. (Computer Science)	Semester	III
The syllabus will	be provided by the respective department		

Course Code &	24TAUS2103 / 24MLUS2103 / 24HIUS2103			
Title	Skill Enhancement Course (AEC):			
	Indian Language (Tamil/Malayalam/Hindi)- III			
	Credits: 3			
Class	B.Sc. (Computer Science) Semester III			
The syllabus will be provided by the respective department				

Course Code &	24EXUE2101		
Title	Extension: Village Placement Programme		
	Credits: 2		
Class	B.Sc. (Computer Science)	Semester	III

SEMESTER IV

Course Code & Title	24CSUC2209 Core Major - 5: Java Programming			
			Credits: 3	
Class	B.Sc. (Computer Science)	Semester	IV	
Course	The Course aims to			
Objectives	 Provide the foundation to the object oriented programming concepts. Discuss the implementation of OOP's concepts in Java language. Make learners as good Java programmers. Import skills and knowledge to create and run Java programs for solving real time problems. 			
Cognitive	K1: Remembering the object oriented approaches in programming.			
Level	K2: Understand the concepts of classes and objects.			
	K3: Apply the various exception handling in Java programs.			
	K4: Analyze the use of strings and ro	le of threads.		
	K5: Create client-side programming u	ising AWT.		

UNIT	CONTENTS	Lecture Schedule
I	Introduction: Object Oriented Programming Concepts -Features of Java Language, Types of Java Programs, Java Architecture. Literals, Data Types and Variables: Literals - Integer, Floating Point, Character, String and Boolean Literals, Data Types - Integer, Floating Point, Character and Boolean. Variables. The Structure of A Java Program — Comments, Expressions and Statements, Type Conversion, Block Statements and Scope. Operators —Arithmetic, Bitwise, Relational, Boolean Logical and Ternary. Operator Precedence. Control Statements — IfElse, Switch, While, DoWhile, For, Break, Continue and Comma Statement. Arrays - One-Dimensional and Multi-Dimensional Arrays.	13
II	Classes: Defining A Class, The New Operator and Objects, The Dot Operator, Method Declaration and Calling, Constructors, Instance Variable Hiding, This in A Constructor, Method Overloading, Passing Objects as Parameters to Methods. Inheritance: Creating Subclasses, Method Overriding, Final Class, Final Method, Final Variables, Object Destruction and Garbage Collection, Recursion, Static Method, Static Variables and Static Block, Abstract Classes. Packages and Interfaces: Package, The Import Statement, Access Modifier, Interfaces - Defining Interfaces, Implementing an Interface Mathematical Methods: Math class methods and programs.	13

	Exceptions, Input and Output Classes	
III	Exceptions: Types of Exceptions, Catching Exceptions - Nested Try Blocks, Hierarchy of Multiple Catch Blocks, Throw Statement, Creating your Own Exceptions, Throws Statement, The Finally Block, Checked and Unchecked Exceptions. Input and Output Classes - I/O Streams, The File Class, Byte Stream - Input Stream, Output Stream, Disk File Handling - File Input Stream, File Output Stream, Filtered Byte Stream - Data Output Stream, Data Input Stream, Object Output Steam, Object Input Stream	12
IV	Strings and Threads Strings: String Class - Equality Operator (==) and Equals Method, String Concatenation with +, String buffer Class. Threads - Multitasking, Creating a Thread, States of a Thread, Multithreaded Programming, Thread Priorities, Join Method, Controlling the Threads	13
V	Applets and Graphics Applets: Applet Basics, Methods of Building an Applet, Some General Methods of Applet, Displaying Text in Status Bar, Embedding Applet Information, The HTML Applet Tag, Reading Parameters into Applets, Colors in Applet. Graphics - Drawing Lines, Rectangles, Ovals and Circles, Arcs, Polygons and Poly line, Colors in Graphics, Fonts in Graphics.	13
	Total Conduct Hours	64

1. K. Somasundaram, Introduction to JAVA Programming, Jaico Publishing House, New Delhi, 2013.

References:

- 1. K. Somasundaram, Programming in Java2, Jaico Publishing House, New Delhi, 2009.
- 2. H .Schildt, Java2: The Complete Reference, 4/e, TMH Publishing Company, New Delhi, 2001.
- 3. K. Somasundaram, Do and Learn JAVA-A Practical Approach, Anuradha Publications, Chennai, 2013.

Course Outcomes	On successful completion of the course, the students will be able to				
	CO1: Outline the concepts of OOP and basics of Java language features, types, control statements and array.				
CO2: Grasped the idea of inheritance, package and identify classes, object member of a class and the relationship among them.					
	CO3: Discuss the implementation of exception handling and Input & Output stream classes.				
	CO4: Describe the methods in String. Identify the use of threads to perform subtask and their control.				
	CO5: Develop client side programming with AWT.				

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
CO5	3	3	3	3	2

Course Code & Title	24CSUC2210 Core Major Lab - 5: Java Programming			
	· ·		Credit: 1	
Class	B.Sc. (Computer Science)	Semester	IV	
Course	The Course aims to			
Objectives	 Develop the programs using a programming Utilize the existing packages for e Help them create their own package Demonstrate the advanced program Explain them the data storage with 	fficient programming ges and databases mming using threads and app		
Cognitive Level	K1-K5			

40
48
48
olymorphism,
ity, exception
e database.
database.
i

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
CO5	3	3	3	3	2

Course Code & Title	24CSUC2211 Core Major - 6: Computer Networks		
	Core mager or c		Credits: 3
Class	B.Sc. (Computer Science)	Semester	IV
Course Objectives	 The Course aims to Understand the basics of computer Learn the models of protocol stack. Learn the working of the transmissing Understand the functionalities of layers. 	ion media and link an	d network layers.
Cognitive Level	 K1: Outline the basic concepts of comp K2: Understand the various types of comp K3: Compare the functionalities of various K4: Analyze the protocol formats in each K5: Investigate the design issues of various 	ommunication media ious layers ch layer	

UNIT	CONTENTS	Lecture Schedule
I	Uses Uses of computer networks - Network hardware - Network software - Reference models - Example networks - Network standardization	12
II	Communication Media Communication Media: Guided transmission media - Wireless transmission - Communication satellites - The public switched telephone network- The mobile telephone system	13
III	Data link layer Data link layer: Data link layer design issues - Error detection and correction - Elementary data link protocols - Sliding window protocols - Multiple access protocols - Wireless LANs - Bluetooth	13
IV	Network Layer Network Layer: Network layer design issues - Routing algorithms - Congestion control algorithms - Quality of service — Internetworking	14
V	Transport Layer Transport Layer: Transport service –Elements of transport protocols – Session Services - DNS- Electronic mail – The World Wide Web.	12
	Total Conduct Hours	64

1. Andrew S. Tanenbaum, Nick Feamster and David Wetherall, "Computer Networks," 6/e, Pearson Education 2021.

References:

- 1. Douglas E. Comer, "Computer Networks and Internet", Sixth Edition, Pearson, 2018.
- 2. William Stallings, "Network Security Essentials: Applications and Standards", Sixth Edition, Pearson, 2018.

Course	On successful completion of the course, the students will be able to				
Outcomes					
	CO1: To remember the basic terminologies and concepts in computer networks.				
	CO2: To understand the various types of communication media.				
	CO3: Recognize the different functionalities of various layers.				
	CO4: Appraise the working of the DNS and WWW.				
	CO5: Understand the protocol formats in each layer.				

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	2	2	1	2
CO2	3	3	-	1	2
CO3	3	3	-	1	3
CO4	3	3	-	1	2
CO5	3	3	-	1	2

Course Code & Title	24CSUC2212 Core Major - Lab 6: Computer Networks		
			Credits: 1
Class	B.Sc. (Computer Science)	Semester	IV
Course Objectives	 The Course aims to List the packages, interfaces and classes required Encode working principles of the existing algorithms Analyse the concepts and implement the algorithms Apply the syntaxes in the appropriate functionalities 		
Cognitive Level	Write new programs based on t K1-K5	the requirements	

Sl. No.	CONTENTS	Hours of Work
1.	Host Identification and Details	
2.	Ping and Echo Commands	
3.	Client/ Server Implementation	
4.	File Transfer	
5.	Framing Techniques	48
6.	Encoding	40
7.	Multi– Client and Server	
8.	Error Control	
9.	Routing Algorithms	
10.	Encryption Techniques	
	Total Conduct Hours	48
Course	On completion of the course, students will be able to	
Outcomes		
	CO1:List the packages, interfaces and methods	
	CO2: Encode the working principles of algorithms	
	CO3: Apply the concepts and implement the algorithms	
	CO4: Write new programs according to the requirements	
	CO5: Solve complex computational problems	

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	2	2	1	2
CO2	3	3	-	1	2
CO3	3	3	-	1	3
CO4	3	3	-	1	2
CO5	3	3	-	1	2

Course Code & Title	24CSUC2213 Core Major - 7: Software Engineering				
		-	Credits: 4		
Class	B.Sc. (Computer Science)	Semester	IV		
Course	The Course aims to				
Objectives	 Understand the various processes re 	equirements and con	cepts		
	Discuses the quality concepts and software quality assurance				
	 Demonstrate the software testing strategies 				
	 Analyze the project scheduling and 	risk management			
Cognitive	K1: Remembering the terminologies in Software Engineering				
Level	K2: Understand the concept of quality in Software Engineering				
	K3: Apply the software testing strategies for any simple application				
	software				
	K4: Analyze the need for project sched	uling and risk mana	gement		

UNIT	CONTENTS	Lecture Schedule
	Process Models	
I	A Generic Process Model – Defining a Framework Activity - Identifying a Task Set - Process Patterns - Process Assessment and Improvement - Prescriptive Process Models – The Waterfall Model-Incremental Process Models - Evolutionary Process Models - Concurrent Models - Specialized Process Models - Component-Based Development - The Formal Methods Model- Aspect-Oriented Software Development.	12
	Design Concepts	
II	The Design Process – Software Quality Guidelines and Attributes - The Evolution of Software Design - Design Concepts – Abstraction-Architecture- Patterns- Separation of Concerns - Modularity-Information Hiding- Functional Independence - The Design Model-Data Design Elements- Architectural Design Elements- Interface Design Elements- Component-Level Design Elements- Deployment-Level Design Elements.	13
	Quality Assurance	
III	Elements of Software Quality Assurance—SQA Tasks, Goals and Metrics — Formal Approaches to SQA — Statistical Software Quality Assurance — A Generic Example - Software Reliability - Measures of Reliability and Availability - Software Safety.	13
	Software Testing Strategies	
IV	A Strategic approach to software testing – Verification and Validation - Organizing for Software Testing - Strategic Issues - test strategies for conventional software – Unit Testing - Integration Testing - Validation Testing – System Testing - Recovery Testing - Security Testing - Stress Testing - Performance Testing - Deployment Testing.	13

	Risk Management	
	Software Risks - Risk Identification - Assessing Overall Project	
${f V}$	Risk - Risk Components and Drivers - Risk Projection – Developing	13
	a Risk Table - Assessing Risk Impact - Risk Refinement -	
	Risk Mitigation, Monitoring and Management – The RMMM Plan	
	Total Conduct Hours	64

1. Roger S. Pressman, Software Engineering – A Practitioner's Approach, 7/e, McGraw Hill Inc., 2014.

References:

- 1. Alistair Cockburn, Agile Software Development, 2/e ,Pearson Education, 2007
- 2. Richard E.Fairley, Software Engineering concepts, Mc-Graw Hill, 1984.

3. Ian So	ommervillie, Software Engineering, 9/e, Addison Wesley, 2011.				
Course	On successful completion of the course, the students will be able to				
Outcomes					
	CO1: Differentiate the various processes and understanding requirements and				
	concepts				
CO2: Understand the quality concepts					
	CO3: Gain knowledge in software quality assurance				
	CO4: Formulate the software testing strategies				
	CO5: Analyze the project scheduling and risk management				

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3
CO2	2	2	3	3	2
CO3	2	3	2	3	2
CO4	3	2	2	3	2
CO5	3	3	3	3	3

Course Code &	24PHUB2204				
Title	Core Minor- 4: PHYSICS – II for Computer Science: Microprocessor and				
	Assembly Language Programming				
	Credits: 3+1				
Class	B.Sc. (Computer Science) Semester IV				
The syllabus will be provided by the respective department					

Course Code &	24ENUA2204			
Title	Ability Enhancement Course (AEC): Science Communication			
	Credits: 3			
Class	B.Sc. (Computer Science)	Semester	IV	
The syllabus will be provided by the respective department				

Course Code &	24EXUE2201				
Title	Extension: Community Engagement				
	Credits: 2				
Class	B.Sc. (Computer Science) Semester IV				
The syllabus will be provided by the respective department					

SEMESTER V

Course Code &	24CSUC3114				
Title	Core Major - 8: Database Man	Core Major - 8: Database Management System			
			Credits: 3		
Class	B.Sc. (Computer Science)	Semester	V		
Course	The Course aims to				
Objectives	 Explain the concepts of database managem 	ent systems			
	 Demonstrate the various data models and database systems 				
	 Create and manipulate to implement database concepts 				
	Design database schema considering the normalization rule				
Cognitive	K1: Remembering the components and functions of database systems				
Level	K2: Understand the various data models in DBMS.				
	K3: Apply the SQL queries to access the data in the database.				
	K4: Analyze the design of a database based on	normalization ru	ıles		

UNIT	CONTENTS	Lecture Schedule
I	Databases and Database Users & Database System Concepts and Architecture Introduction - An Example - Characteristics of the Database Approach - Actors on the Scene - Workers behind the Scene - Advantages of Using the DBMS Approach. Database System Concepts and Architecture - Data Models, Schemas, and Instances - Three - Schema Architecture and Data Independence - Database Languages and Interfaces - The Database System Environment - Centralized and Client/Server Architectures for DBMSs - Classification of Database Management Systems.	12
II	Data Modeling Using the Entity – Relationship (ER) Model Using High-Level Conceptual Data Models for Database Design - A Sample Database Application - Entity Types, Entity Sets, Attributes, and Keys - Relationship Types, Relationship Sets, Roles, and Structural Constraints - Weak Entity Types - Refining the ER Design for the Company Database - ER Diagrams, Naming Conventions, and Design Issues.	13
III	The Relational Data Model and Relational Database Constraints The Relational Data Model and Relational Database Constraints: Relational Model Concepts - Domains, Attributes, Tuples, and Relations - Characteristics of Relations - Relational Model Constraints and Relational Database Schemas - Update Operations, Transactions, and Dealing with Constraint Violations.	13

	Basic SQL	
	Basic SQL: SQL Data Definition and Data Types - Schema and	
IV	Catalog Concepts in SQL - The CREATE TABLE Command in	13
- V	SQL - Attribute Data Types and Domains in SQL - Specifying	15
	Constraints in SQL - Basic Retrieval Queries in SQL - INSERT,	
	DELETE, and UPDATE Statements in SQL	
	Complex Queries, Triggers, Views and Schema	
	Modification	
	More Complex SQL Retrieval Queries - Comparisons	
	Involving NULL and Three-Valued Logic - Nested Queries,	
\mathbf{V}	Tuples, and Set/Multiset Comparisons - Correlated Nested	13
	Queries - Specifying Constraints as Assertions and Actions as	
	Triggers - Views (Virtual Tables) in SQL - Concept of a View	
	in SQL - Specification of Views in SQL - Schema Change	
	Statements in SQL.	
	Total Conduct Hours	64

1. Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 7th Edition, Pearson, New Delhi, 2016.

References:

- 1. Ramez Elmasri and Shamkant B. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson, New Delhi, 2014.
- 2. Avi Silberchartz, Henry F. Korth and S.Sudarshan, Database System Concepts, 6/e, McGraw Hill Higher Education, International Edition, 2010.
- 3. Peter Rob, Carlos Coronol, Steven A. Morris, Keeley Crokett, Database Principles, 2/e, Cengage Learning, 2013

Course Outcomes	On completion of the course, students will be able to
	 CO1: Discuss the components, functions and various database design techniques used for modeling the databases management system. CO2: Analyze the various data models and database architecture CO3: Examine the clauses and functions of SQL and write optimal queries in the above language.
	CO4: Design entity-relationship diagrams to represent simple database application scenarios.CO5: Apply the database schema normalization rules and techniques tocriticize and improve the database design

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
CO5	3	3	3	3	2

Course Code &	24CSUC3115			
Title	Core Major - Lab 7: DBMS			
			Credit: 1	
Class	B.Sc. (Computer Science)	Semester	V	
Course	The Course aims to			
Objectives	 Prepare the students to create and manipulate relations using SQL Write basic queries, views and triggers using SQL Use oracle database from front-end applications 			
Cognitive Level	K1-K5			

Sl. No.	CONTENTS	Hours of Work
	RDBMS (Oracle)	
1.	Tables: Creations, Assigning various types of keys, Sorting, Setting relation between tables Queries using single and multiple tables	48
2.	Cursor and Triggers	
3.	Importing Tables from Electronic Spreadsheet and Text File	
4.	Report creation from usage	
	Total Conduct Hours	48
Course	On completion of the course, students will be able to	
Outcomes		
	CO1: Model the databases using SQL	
	CO2: Write SQL queries, sub queries and aggregate functions using single multiple tables	and
	CO3: Implement views and triggers using SQL	
	CO4: Use reporting tools to generate reports using databases	
	CO5: Develop a simple project using SQL as back-end from front - end ap	plications.

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3

Course Code	24CSUC3116 Core Major - 9: Cloud Computing				
& Title	Core Major - 9	: Cloud Compuur	Credits: 4		
Class	B.Sc. (Computer Science)	Semester	V		
Course	The Course aims to				
Objectives	Classify the various Cloud computing services and applications				
	 Understand the architecture of Cloud computing 				
	 Know the Cloud computing stand 	Know the Cloud computing standards			
	 Realize the issue in cloud security 	у.			
Cognitive	K1: Remembering the basic concepts	K1: Remembering the basic concepts of cloud computing			
Level	K2: Understand the architecture of cloud computing				
	K3: Apply the different frameworks for cloud computing				
	K4: Analyze the practical applications of cloud computing				
	K5: Evaluate the security levels in clo	oud computing			

UNIT	CONTENTS	Lecture Schedule
I	Understanding Cloud Computing History of Cloud computing - Cloud Computing Architectural Framework - Types of Clouds - pros and cons of cloud computing - difference between web 2.0 and cloud - key challenges in cloud computing - Major Cloud players - Cloud Deployment Models - Virtualization in Cloud Computing - types of virtualization - Parallelization in Cloud Computing - cloud resource management -	14
II	dynamic resource allocation - Optimal allocation of cloud models. Cloud Service Models Software as a Service (SaaS) - Infrastructure as a Service (IaaS) - Platform as a Service (PaaS) - Service Oriented Architecture (SoA) - Elastic Computing - On Demand Computing.	12
III	Applications Deployment of applications on the cloud - Hypervisor - Case studies - Xen, VMware, Eucalyptus - Amazon EC2, KVM, Virtual Box, Hyper-V.	12
IV	Cloud Computing For Everyone Cloud data centres - Energy efficiency in data centre - Mobile cloud computing service models - Collaboration with services and applications: CRM management - Project management - Email - on line database - calendar - schedules - Word Processing - Presentation - Spreadsheet - Databases - Desktop - Social Networks and Groupware.	14
V	Cloud Security Cloud security - Security threats and solutions in clouds - Auditing protocols - dynamic auditing - storage security - Privacy preserving - Fully Homo-morphic Encryption - big data security - Cloud availability - DoS attacks - Fault tolerance management in cloud computing - Cloud computing in India.	12
	Total Conduct Hours	64

1. Anthony T.Velte, Toby J. Velte Robert Elsenpeter, Cloud Computing a Practical Approach, TATA Mc-Graw - Hill, New Delhi, 2017

References:

- 1. Judith Hurwitz, Bloor.R, Kanfman.M, Halper.F, (2010), "Cloud Computing for Dummies", Wiley India Edition.
- 2. Gautam Shroff, (2010), "Enterprise Cloud Computing", Cambridge University press.
- 3. Ronald Krutz and Russell Dean Vines, (2010), "Cloud Security", Wiley-India Pvt. Ltd.
- 4. Michael Miller Que, Cloud Computing: Web-Based Applications, That Change the way You Work and Collaborate Online 2008
- 5. Ronald L. Krutz, Russell Dean Vines, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Wiley-India, 2010

CO1: Gain knowledge in Basics of Cloud computing.			
CO2: Understand Cloud Computing architecture. CO3: Learn the different types of frameworks.			
CO5: Should be able to define the security of cloud.			
()			

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	2	2	3	3	2
CO2	3	3	3	1	2
CO3	3	2	2	3	3
CO4	3	3	3	2	3
CO5	2	2	1	1	2

Course Code & Title	24CSUC3117 Core Major - 10: Mobile Computing			
			Credits: 4	
Class	B.Sc. (Computer Science)	Semester	V	
Course	The Course aims to			
Objectives	 Learn about the importance of mobile devices and use Understand the merits of its communication strategies in present scenario. Analyze and apply various tools and techniques used in mobile Computing 			
Cognitive	K1: Remembering the types of wireless devices and their features			
Level	K2: Understand the concepts of data transmission through wireless and MAC			
	K3: Analyze the tools and techniques in n	nobile computing		

UNIT	CONTENTS	Lecture Schedule
I	Introduction: Need for Mobile Computing, Mobile and Wireless Devices, Applications, History of wireless communication, A Simplified reference model. Wireless transmission basics: Frequencies for radio transmission, Regulations, Signals, Antennas, Signal Propagation, Multiplexing, Modulation.	12
П	Wireless Transmission & MAC Spread Spectrum: Direct sequence spread spectrum, Frequency hopping spread spectrum, Cellular systems. Medium access control: Hidden and exposed terminals, Near and far terminals, SDMA, FDMA, TDMA, CDMA, and comparisons.	13
Ш	GSM and Satellite Systems GSM: Mobile services, System architecture, Localization and calling, Handover, Security. Satellite Systems: Applications, Basics, Routing, Localization, Handover.	13
IV	Wireless LAN Wireless LAN: Infrared vs. Radio transmission, Infrastructure and ad-hoc network, IEEE 802.11 – Architecture, Physical Layer, MAC Layer. Bluetooth: Architecture, Link Management and Security. Mobile Network Layer	13
V	Mobile Network Layer: Mobile IP – Goals, Entities and terminology, Packet Delivery Strategies, Registration, Tunneling and Reverse Tunneling, MANET: Characteristics, Routing Strategies and Protocols. Total Conduct Hours	13 64

1. Jochen Schiller, Mobile Communication, 2/e, Pearson Education, Delhi 2009.

Reference:

1. Kum Kum Garg, "Mobile Computing Theory and Practice", Pearson Education, 2014.

Course	On successful completion of the course, the students will be able to					
Outcomes	_					
	CO1: Learn the types of mobile and wireless devices available and their features.					
	CO2: Understand the basics of wireless transmission and MAC.					
	CO3: Understand different types of telecommunication systems.					
	CO4: Identify the types of wireless LAN architecture and protocols.					
	CO5: Learn the structure, features and transmission techniques of mobile IP.					

Course Code	24GIUB3105				
& Title	Core Minor- 5: Geographical Information System				
	Credits: 3+1				
Class	B.Sc. (Computer Science)	Semester	V		
The syllabus wi	The syllabus will provided by the respective department				

Course Code & Title	24CSUC3118 Internship			
		•		Credits: 2
Class	B.Sc. (Computer Science)		Semester	V

Course Code	24CSUE3101				
& Title	Field Study: Information Technology for Rural Development				
			Credits: 2		
Programme	B.Sc.(Computer Science)	Semester	V		
Course	The Course aims to				
Objectives	Provide the basics of ICT technology				
	Impart the basics skills in ICT Applications				
	Understand the importance of ICT in Rural development				
	Inculcate the impact of ITRD through filed study				
Cognitive	K1: Recall the various ICT tools and techniques.				
Level	K2: Understand the need for ICT in Rural Development.				
	K3: Conduct the field based study to evaluate the use of ICT for rural				
	development.				

UNIT	CONTENTS	Lecture Schedule	
	Introduction to ICTs for sustainable Development		
	Introduction to Information and Communication		
	Technology (ICT): Role of ICTs in Sustainable		
I	Development - Current Status of ICT sin Sustainable	8	
	Development - Global and India, Scenario - Potential of		
	ICT sin various fields - Impact of Information Technologies		
	on GDP growth.		
	Information		
II	Internet and WWW - Community radio - Technology - User	8	
	interface - Design of relevant ICT products and services.		
	ICT Applications		
	Applications of ICT in Education - Health - Gender Equality		
III	- agriculture - Rural Industry – E - Governance, Telecentres -	8	
	Climate change and disaster management - ICT Networks for		
	water management.		
	ICT Applications		
IV	Field based case study on Information and Communication	8	
	Technology for Rural Development.		
	Total Conduct Hours	32	

1. Dr. M. Vanaja, Dr. S. Rajasekar, Information & Communication Technology (ICT) in Education Paperback, 2016.

Reference:

1. Prof. T. Mrunalini, Prof. A. Ramakrishna, Information & Communication Technology (ICT) in Education, Paperback, 2016

Course	On successful completion of the course, the students will be able to
Outcomes	CO1: Understand various ICT tools and techniques CO2: Realize the importance of ICT in rural development CO3: Select the right tools for right applications CO4: Analyse various existing ICT products for Sustainable development CO5: Realize the use of ICT in rural development through field based Study
	a cady

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	2	3	3	3
CO2	2	2	3	3	3
CO3	1	1	3	3	3
CO4	1	2	3	3	3
CO5	2	2	3	3	3

SEMESTER VI

Course Code	24CSUC3219			
& Title	Core Major - 11: Web Programming			
			Credits: 3	
Class	B.Sc. (Computer Science)	Semester	VI	
Course	The Course aims to			
Objectives	Provide insight into the basics of Web Programming			
	Design and implement a dynamic web applications using HTML, JavaScript and PHP			
Cognitive	K1: Recall the basis of internet.			
Level	K2: Understand the use of HTML and CSS for web designing.			
	K3: Develop dynamic web pages using JavaScript and PHP.			
	K4: Create a webpage for any real time applications.			

UNIT	CONTENTS	Lecture Schedule
I	Web Essentials Web Programming Fundamentals – Origin of the Internet – WWW – Web Browser. Web Servers: Introduction – Types of servers – Apache HTTP Server – IIS (XAMPP – LAMPP) and Tomcat servers Web Application Framework: Introduction – Advantages – Types of	12
	Frontend and Backend frameworks.	
II	Markup Language Introduction to HTML: Headings - Linking- Internal linking - Images- Special Characters and horizontal Rules - Lists- Tables- Forms-Frames- Meta elements. CSS: Introduction to Cascading Style Sheets - Cascading Style Sheet Features - CSS Core Syntax - Style Sheets and HTML - Style Rule Cascading and Inheritance - Text Properties - CSS Box Model	13
Ш	Client-Side Programming Java Script: Introduction to Scripting -Control Statements – Functions. Objects: Math object –Array Object-String Object Document object - Boolean and Number objects -Window object. Events handling.	13
IV	Server-Side Programming PHP: Introduction – Syntax – Comments – Variables – Operators – Expression – Conditional and Branching Statement – Looping statements - Functions – Arrays - Form Elements – File Handling	14
V	Database Connectivity Database Connectivity with MySQL: MySQL Database Connect- Create Database-Create Table – Insert Data – queries – Integrating web form and databases – Displaying queries in Tables	12
	Total Conduct Hours	64

- 1. Jeffrey C. Jackson, Web Technologies: A Computer Science Perspective, Pearson Education, New Delhi, India, Last Impression 2010.
- 2. Steven Holzner, PHP: The Complete Reference, Tata McGraw-Hill, 2017
- 3. Deitel, Internet and World Wide Web How to Program, Fourth Edition, Pearson Prentice Hall, 2011

References:

- 1. Uttam K. Roy, "Web Technologies", Oxford University Press, 2011.
- 2. Julie C. Meloni, Sams Tech Yourself: HTML, CSS and JavaScript all in One, SAMS, 2014.
- 3. Achyut S Godole & Atul Kahate, Web Technologies, TCP/IP Architecture and Java Programming, Second Edition, Tata Mc-Graw Hill, 2010
- 4. Deitel H.M and Nieto T.R, Internet and World Wide Web How to Program, Fifth Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2012
- 5. JavaScript: Programming Basics for Absolute Beginners (Step-By-Step JavaScript Book 1), Nthan Clark, Kindle Edition, 2018.

E-Resource:

- www. w3schools.com
- https://www.seu1.org/files/level6/IT230/Book/(web.tech%201st%20book)%20Web%20Tech nologies%20-%20A%20Computer%20Science%20Perspective.pdf
- https://www.pearson.ch/HigherEducation/Pearson/EAN/9780273764021/Internet-and-World-Wide-Web-How-to-Program

Course	On successful completion of the course, the students will be able to
Outcomes	
	CO1: Outline the basics of internet and IP address
	CO2: Design webpages using HTML and CSS
	CO3: Have practical experience in creating dynamic HTML
	CO4: Generate dynamic content to webpages using JavaScript and PHP
	CO5: Develop online web applications using MySQL database

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3

Course Code &	24CSUC3220				
Title	Core Major - Lab 8: Web Programming				
Class	P. Co. (Computer Science)	Compaton	Credit: 1 VI		
Class	B.Sc. (Computer Science)	Semester	V1		
Course	The Course aims to	The Course aims to			
Objectives	Explore the designing of web applications				
	Design and implement a dynamic web applications using HTML, Java				
	Script and PHP				
Cognitive Level	K1 – K5				

Sl. No.	CONTENTS	Hours of Work			
1.	Web page design using HTML Tags				
2.	Creation - Ordered List, Unordered List, Tables, Frames, Links,				
3.	Image Anchor, Image Maps				
4.	Using Form Controls with Input Tag, Cascading Style Sheets	40			
5.	Working with client-side scripting using JavaScript	48			
6.	Working with server-side scripting using PHP				
7.	Exploring the usage of MYSQL database				
8.	Develop a Web applications				
	Total Conduct Hours	48			
Course	On completion of the course, students will be able to				
Outcomes					
	CO1: Design webpages using HTML and CSS				
	CO2: Write scripts using JavaScript to develop dynamic webpages				
	CO3: Develop online web applications using JavaScript and PHP				
	CO4: Develop web application project using web designing tools and Techniques				
l	CO5: Hosts the web application in the internet				

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3

Course Code &	24CSUC3221				
Title	Core Major - 12: Introduction to Artificial Intelligence Credits: 4				
Class	B.Sc. (Computer Science)	Semester	VI		
Course	The Course aims to				
Objectives	 Explain the basic concepts of Artificial Intelligence. Demonstrate the methods of solving problems using Artificial Intelligence. Outline the basic issues of knowledge representation and Inference that play an important role in AI programs. Discuss the applications of AI such as Natural language processing, Robotics, Expert systems. 				
Cognitive	K1: Define the basic concepts of Artificial Intelligence				
Levels	K2: Demonstrate the Implementation of Heuristic Search Techniques				
	K3: Develop the model for Knowledge Representation				
	K4: Apply the Computable Functions and Predicates				
	K5: Examine the applications of AI such as Natural Language processing,				
	Robotics, Expert systems.				

UNIT	CONTENTS	Lecture Schedule
	Introduction to AI	
	Artificial Intelligence: The AI Problems – The Underlying	
I	Assumption- AI Technique- The level of the Model – Criteria for	8
•	Success - Problems, Problem Spaces and Search: Defining the	O O
	Problem as a State Space Search – Production System	
	Characteristics - Issues in the Design of Search Programs	
	Heuristic Search Techniques	
II	Generate - and - Test – Hill Climbing Best-FirstSearch – Problem	8
	Reduction Constraint Satisfaction – Means-Ends Analysis.	
	Knowledge Representation	
TTT	Representing Knowledge using Rules: Procedural versus	8
III	Declarative knowledge – Logic Programming Forward versus	0
	Backward Reasoning – Matching – ControlKnowledge.	
	Predicate Logic	
IV	Using Predicate Logic: Representing Simple Facts in Logic -	8
1 4	Representing instance and Relationships - Computable Functions	0
	and Predicates – Resolution – Natural Deduction.	
	Introduction To NLP, Neural Introduction To NLP, Neural	
	Nets, Game Playing, Expert Systems	
	Game Playing: Overview – The Minimax Search Procedure	
V	Natural Language Processing: Introduction. Connectionist	
	Models: Introduction Hopfield Networks	
	Learning in Neural Networks: Perceptron Expert Systems:	
	Representing and Using Domain Knowledge	
	Total Conduct Hours	32

1. Kevin Knight and Shivashankar B Nair, Artificial Intelligence, Elaine Rich, 3rd Edition, Tata Mc-Graw, Hill publications, 2014 Reprint.

(Chapters: 1 - 6, 12.1, 12.2, 15.1, 18.1, 18.2.1, 20)

References:

- 1. Nils J Nilson, Principles of Artificial Intelligence, Narosa Publishing House, 1982.
- 2. Elaine Rich, Artificial Intelligence, Tata McGraw-Hill publications, 2008.
- 3. V.S.Janakiraman, K. Sarukesi, P.Gopalakrishnan, Foundations of Artificial Intelligence and Expert System, Infinity Press, 1st Edition, 2016.

Course	On successful completion of the course, the students will be able to				
Outcomes					
	CO1: Differentiate AI method of problem solving from normal methods.				
	CO2: Identify heuristics for a given problem.				
	CO3: Explain the various search techniques.				
	CO4: Explain predicate logic.				
	CO5: Describe the fundamentals of Game Playing, NLP, NN and Expert				
	Systems.				

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	2	3	2	3	3
CO2	1	2	3	3	2
CO3	1	3	2	3	1
CO4	1	2	2	3	1
CO5	1	3	3	3	3

Course Code &	24CSUC322				
Title	Core Major - 13: Informa	ation Security			
			Credits: 4		
Class	B.Sc. (Computer Science)	Semester	VI		
Course	The Course aims to				
Objectives	 Understand the need for Security. 				
	Define the basics of Information Security				
	Identify Risk and Management of Risks				
	 Recognize various standards in Security 				
Cognitive	K1: Learn fundamentals of cryptography and its application to network security.				
Level	K2: Understand the need for security, threats, s	security services, an	d attacks.		
	K3: Analyze the identification of Risk Management.				
	K4: Apply the Information security planning and policies to real time				
	applications.	-			
	K5: Evaluate the Intrusion Detection and Preven	ention Systems.			

UNIT	CONTENTS	Lecture Schedule
I	Introduction Introduction: History, What is Information Security? - Critical Characteristics of Information - NSTISSC Security Model - Components of an Information System - Balancing Security and Access - The SDLC, The Security SDLC	10
II	Security Investigation Security Investigation: Need for Security - Business Needs - Threats - Attacks - Secure Software Development - Laws and Ethics in Information security - Ethics in Information security	13
III	Security Analysis Risk Management: Identifying and Assessing Risk - Controlling Risk - Quantitative versus Qualitative Risk control practices - Risk management discussion points	13
IV	Logical Design Information security planning and Governance - Information Security Policy - Standards and Practices - The Information Security Blueprint - Security Education, Training and Awareness program - Continuity Strategies	14
V	Physical Design Intrusion Detection and Prevention Systems - Scanning and Analysis Tools - Cipher Methods - Cryptographic Algorithms - Cryptographic Tools - Attacks on Cryptosystems - Physical Access Controls	14
	Total Conduct Hours	64

1. Michael E Whitman and Herbert J Mattord, Principles of Information Security, 4/e, Cengage Learning, New Delhi, 2012.

References:

- 1. Micki Krause, Harold F. Tipton, Handbook of Information Security Management, Vol. 1–3, CRC Press, LLC, 2004.
- 2. Stuart Mc Clure, Joel Scrambray, George Kurtz, Hacking Exposed, Tata McGraw-Hill, 2003.
- 3. Matt Bishop, Computer Security Art and Science, Pearson/Prentice Hall of India, 2002.

Course	On successful completion of the course, the students will be able to				
Outcomes					
	CO1: Explain the basics of Information Security				
	CO2: Describe various Security Threats and Attacks				
	CO3: Analyse Risk Management				
	CO4: Define various standards in Security				
	CO5: Explain technological aspects of Information Security				

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	2	2	3	3	2
CO2	3	2	3	1	3
CO3	2	2	2	3	3
CO4	3	2	3	2	3
CO5	1	1	2	2	2

Course Code & Title	24CSUC3223 Core Major - 14: Data Mining			
			Credits: 4	
Class	B.Sc. (Computer Science)	Semester	VI	
Course	The Course aims to			
Objectives	Explore the evolution of data mining.			
	Teach the basic concepts of Data Warehousing and its Architecture.			
	Discuss the basic algorithms and techniques used in data mining.			
	K-1: Define the concepts and architecture of data warehousing.			
Cognitive	K-2: Understand the working of recent classification and Cluster analysis.			
Level	K-3: Comprehend and select data mining tec	chnique in a problem s	specific	
	manner.			

UNIT	CONTENTS	Lecture Schedule
	Introduction	
	Data Mining – Need for Data Mining – Kinds of Data can be Mined	
I	Kinds of Patterns can be Mined – Technologies used	14
_	Applications Targeted – Major Issues in Data Mining Data Objects and	17
	Attribute Types – Basic Statistical Descriptions of Data, Data	
	Visualization – Measuring Data Similarity and Dissimilarity	
	Data Pre-processing	
II	Data Pre-processing: An Overview - Data Cleaning Data Integration	12
	Data Reduction, Data Transformation and Data Discretization	
	Data Warehousing	
	Data Warehousing: Introduction- Difference between Database Systems	
III	and Data Warehouses - A Multi-tiered Architecture Data Warehouse	14
	Models- Data Cube: A Multidimensional Data Model Data Warehouse	
	Design and Usage	
	Classification	
IV	Classification – Basic Concepts – Attribute selection Measures- Decision	12
	Tree Induction - Bayes Classification Methods	
	Cluster Analysis	
	Cluster Analysis - Partitioning methods – K MEANS, K-MEDOIDS	
V	Hierarchical methods- BIRCH, ROCK Density based methods -	12
	DBSCAN	
	Grid based methods: STING	
	Total Conduct Hours	64

1. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, Morgan Kauffmann Publishers, 2012.

(Chapters: 1,2,3,4.1,4.2.1,4.3,4.4.1,8.1-8.3,10.1-10.4)

References:

- 1. Hongbo DLL, Data Mining Techniques and Applications: An Introduction,
- 2. Cengage Lmg Business Press, 2010.
- 3. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, 3rd Edition Morgan Kauffmann Publishers, 2011.

- 4. Udit Agarwal, Data Mining & Data Warehousing, 1 st Edition, S.K.Kataria & sons Publication, 2016.
- 5. https://www.tutorialspoint.com/data_mining/index.htm
- 6. https://www.tutorialspoint.com/data_mining/index.htm

Course Outcomes CO1: Comprehend the fundamental principles of data mining CO2: Explain the data extraction and transformation techniques. CO3: Describe Data Warehouse architecture and multidimensional data model CO4: Illustrate the use of decision tree induction for mining classification rules CO5: Explain the different types of clustering methods used in cluster analysis.

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3
CO2	2	2	3	3	2
CO3	2	3	2	3	2
CO4	3	2	2	3	2
CO5	3	3	3	3	3

Course Code & Title	24GIUB3206 Core Minor- 6: GIS – II: Remote Sensing			
	Credits: 4			
Class	B.Sc. (Computer Science)	Semester	VI	
The syllabus will provided by the respective department				

Course Code & Title	24CSUC3224 Core Major: Project/ Major – 15: Mobile Application			edits: 4
	Development			
Class	B.Sc. (Computer Science)	Semes	ter	VI

B.Sc. Computer Science (Honours) SEMESTER VII

Course Code &	24CSUC4125					
Title	Core Major - 16: Advanced Algorithms					
	Credits: 4					
Class	B.Sc. (Computer Science) Semester VII					
Course	The Course aims to					
Objectives	Demonstrate the procedures for analyzing and comparing the					
	performance of different algorithms.					
	Impart an overview of Algorithms and their applications					
	 Describe the basic algorithm design strategies. 					
	• Prepare the students to write effective algorithms for solving a given problem.					
	K-1 Describe the fundamental strategies of algorithm design					
Cognitive	K-2 Apply the appropriate algorithm strategy for finding efficient solution to a					
Level	given problem					
	K-3 Analyse and compare the performance of different algorithms.					

UNIT	CONTENTS	Lecture Schedule				
	Introduction					
I	Definition – Algorithm Specification –Recursive Algorithms – Performance Analysis – Space Complexity – Time Complexity – Asymptotic Notations. Graphs – Introduction – Definitions – Graph Representations.					
	Greedy Method					
II	General Method-Binary Search – Merge Sort, Quick Sort. The Greedy Method: General Method -Knapsack Problem, Minimum Cost Spanning Trees: Prim's Algorithm -Kruskal's Algorithm - Single Source Shortest Paths.	13				
	Dynamic Programming					
III	The General Method – Multistage Graphs – All Pairs Shortest Paths – Optimal Binary Search Trees – Travelling Salesman Problem.	13				
	Backtracking					
IV	The General Method – The 8 Queens Problem – Sum of Subsets - Graph Coloring -Hamiltonian Cycles.	12				
	Randomized Algorithms					
V	Randomized Algorithms: Introduction- Classification of Randomized Algorithms - Randomized Quick Sort - Karger's Miinium Cut Algorithm.	13				
	Total Conduct Hours	64				

- 1. Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni & Sanguthevar Rajasekaran, 2nd Edition, University Press, 2017.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, 2nd Edition, Prentice Hall of India Pvt Ltd,2006

References:

- 1. Data Structures and Algorithms in Python, The Complete Beginners Guide, DS Publishing, 2019
- 2. Dr. Basant Agarwal, Hands-On Data Structures and Algorithms with Python, Second Edition, 2018.
- 3. Design and Analysis of Algorithms, Prabhakar Gupta, Vineet Agarwal, Manish Varshney, Phi learning Pvt. Ltd, New Delhi, 2012.
- 4. Algorithm and Data Structures, Levitin, Anany, 2nd Edition, Pearson Publication, Delhi, 2013.
- 5. Algorithms and Data Structures, M. M. Raghuwanshi, Narosha Publishing House, 2016.

E-Reference:

https://www.tutorialspoint.com/data_structures_algorithms/index.htmlhttps://onlinecourses.nptel.ac.in/noc20_cs70/preview

Course	On successful completion of the course, the students will be able to
Outcomes	
	CO1: Analyze the time and space complexity of given Algorithms.
	CO2: Apply Divide & Conquer and Greedy strategies in solving problems.
	CO3: Illustrate and apply the Dynamic Programming technique to solve the problems
	CO4: Demonstrate the principle of Backtracking and its applications in solving
	typical problems like 8-Queens problem and Sum of Subsets problem
	CO5: Analyse the application of randomized algorithms for solving problems.

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	1	3	3
CO2	3	3	1	2	3
CO3	3	3	1	1	3
CO4	3	3	1	1	3
CO5	3	3	1	2	3

Course Code &	24CSUC4126				
Title	Core Major - 17: Advanced Java programming				
			Credits: 3		
Class	B.Sc. (Computer Science)	Semester	VII		
Course	The Course aims to				
Objectives	 To make learners a good Java programmer for developing advanced applications To import skills and knowledge to create and run Java programs for solving real time problems 				
Cognitive	K1: Remember the basic concepts of Java Programming				
Level	K2: Illustrate the Event-Handling Modules with Swing Component.				
	K3: Apply the various Swing-2 GUI Components.				
	K4: Analyze the JDBC Connectivity.				
	K5: Evaluate the Working model using JSP an	nd Servlet.			

UNIT	CONTENTS	Lecture		
	Basics	Schedule		
I	Basics: Introduction, Literals, Data types, Variables, Operator, Control Statements, Arrays, Class and Objects, Inheritance, Exception Handling.	12		
	Event Handling			
II	Event Handling: Model, Event, Event Listeners, Registering Listener with Source, Example programs, Adapter Classes. Swing-1 (Graphics): JComponent, JFrame	13		
	GUI Components			
Ш	Swing-2 (GUI Components): Jbutton, JLabel, JToggle Button, JCheckBox, JRadioButton, JList, JScrollBar, JTextField, JPasswordField, JTextArea, JComboBox, JMenuItem, JMenu, JMenuBar, Jdialog, JProgressBar, LayoutManager.	13		
	JDBC			
IV	JDBC: Introduction, Driver Manager, Connection Interface, Statement Interface, Prepared Statement Interface, Callable Statement Interface, Result Set Interface	12		
	Servlet			
V	V Servlet: Introduction, HTML, Interface Servlet, HttpServlet Class, Servlet Programs, Servelet with I/O Files, Servelet with JDBC, Session Handling, Session Tracking. JSP: Introduction, JSP Working Model, Syntax of a JSP Page with Sample Programs.			
	Total Conduct Hours	64		

1. Advanced Programming in Java2, K.Somasundaram, Jaico Publishing Company Limited, New Delhi, 2008.

References:

- Herbert Schildt, Java 2-The complete reference, 7th Edition McGraw Hill, 2018.
 Naughton and Herbert Schildt, Java The complete reference, 7th Edition McGrawHill, 2007.

- 3. Jim Keogh, The Complete Reference J2EE, Tata McGraw Hill Edition, NewDelhi, 2002.
- 4. Marty Hall, and Larry Brown, Core Servlets and Java Server Pages, 2nd Edition, Pearson Education, 2004

E-Resources:

1. Advanced Programming in Java2, https://www.researchgate.net/publication/315894230_Advanced_Programming_in_Java2

2. JDBC, Java Database Connectivity, K.Somasundaram, Jaico Publishing House, Mumbai, India, First Edition, 2013. JDBC Connectivity in Java JDK16, June 2021, DOI: 10.13140/RG.2.2.19415.60325

https://www.researchgate.net/publication/352172393_JDBC_Connectivity_in_Java_JDK16

3. Installing Eclipse 2019-12-R and Tomcat 9.0 and Develop a Servlet, June 2021, DOI:10.13140/RG.2.2.12123.08487

https://www.researchgate.net/publication/352785295 Installing Eclipse 2019-

12- R_and_Tomcat_90_and_Develop_a_Servlet

4. JSP, Java Server Pages, In book: Server Side Programming Chapter: Chapter 25,K.Somasundaram, 2012, DOI: 10.13140/2.1.1715.9365

Course	On successful completion of the course, the students will be able to					
Outcomes	CO1: Java Programming basic & OOPS Develop Concepts.					
	CO2: Interactive applications by capturing events activities					
	CO3: GUI oriented applications by using several graphical components					
	CO4: Database connectivity and handling					
	CO5: Server-side programming &Web applications in a client-server architecture					

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	3	3
CO2	3	3	3	2	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Course Code & Title	24CSUC4127 Core Major - Lab 9: Advanced Java & Algorithms					
	Credit:1					
Class	B.Sc. (Computer Science) Semester VII					
Course Objectives	 The Course aims to This course aims to train the students for developing Java programs for advanced concepts such as GUI based applications, handling server-side programming, client-server applications and Algorithms. 					
Cognitive Level	K1-K5					

Unit	Content	Lecture Schedule
1.	Sample Programs 1. Using Control Structure 2. Creating Class and Objects 3. Using Constructors 4. Using Inheritance 5. Using Exception Handling	10
2.	Event Handling & Swing-1(+Graphics) 6. Create applet with default Panel in Japplet 7. Create applet on JFrame 8. Applet with data 9. Draw, line, rectangle, filledrectangle 10. Draw oval, arc, polygon,polyline 11. Event handling- MouseEvent,KeyEvent, ActionEvent,WindowEvent 12. Swing with JFrame 13. JButton,JText,JTextfield (on JApplet and JFrame)	10
3.	Swing-2 14. JLabel, JCheckBox, JRadioButton and usingthem 15. JList and usingit 16. JScrollBar, JScrollPane, 17. TexField, JPassword, JTextArea 18. JComboBox, JMenuItem, JMenu, JMenuBar 19. JDialog, JOptionPane, JFileChooser, JProgressBar 20. BorderLayout, FlowLayout, GridLayout, CardLayout	10
4.	JDBC 21. Configuring ODBC in the system 22. Creating connection and identifying Drivers 23. Creating and using a database 24. Use of Statement interface and database 25. Use of Prepared Statement and database 26. Use of Callable Statement and database 27. Use of ResultSet interface and database	9

5.	Servlet					
· .	28. Simple Servlet	9				
	29. Servlet - HTML form with GET and Servlet with doGet()					
	method					
	30. Servlet - HTML form with POST and Servlet with					
	doPost() method					
	31. Servlet with doGet() and doPost()methods					
	32. Servlet receiving numbers and processing and					
	sending the result (Factorial, Sum of numbers)					
	33. Servlet with JDBC					
	34. Creating cookies and reading them					
	JSP					
	35. Creating HTML with various formats, superscript, subscript					
	36. HTML with Tables, images, link to other page					
	37. HTML with different forms-input, button, select, textarea					
	38. Creating a simple JSP with welcome note					
	39. JSP with page directive					
	40. JSP with Scriptlet- finding factorial, JSP with expression					
	41. JSP with declaration					
	42. JSP with implicit object					
	43. JSP with action element- Java beans					
6.	ADVANCED ALGORITHMS					
	1. Knapsack Problem.					
	2. Prim's Algorithms.					
	3. Multistage Graph.					
	4. All pairs shortest path.					
	5. 8 Queens problem					
	6. Sum of subsets					
	7. Hamiltonian cycle.					
	8. Randomized Algorithm (Quick select).					
	Total Conduct Hours	48				
Course	On completion of the course, students should be able to					
Outcomes	CO1: Develop programs using delegation vent models					
	CO2: Design GUI based applications					
	CO3: Develop application using packages and store the data in the database.					
	CO4: Demonstrate server-side programming					
	CO5: Design client-server based applications for all real-time problems.					

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	2	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Course Code	24CSUC4128 Core Major - 18: Machine Learning using Python				
& Title	Core Major - 18: Machine I	Learning using Pytnon	Credits:3		
Class	B.Sc. (Computer Science)	Semester	VII		
Course	The Course aims to				
Objectives	 To impart knowledge on core con 	cepts and techniques of ma	nchine		
	learning.				
	 To impart a skill on data representation, processing and inference. 				
	To have a thorough understanding of the regression and classification.				
	To familiar with a set of well-known machine learning algorithms.				
	To develop the skills in using recent machine learning software for				
	solving practical problems.				
Cognitive	K1: Remembering the mathematical concep	ots of machine learning app	proaches.		
Level	K2: Understand the fundamentals of linear	algebra and probability the	eory to the		
	machine learning problems.				
	K3: Apply the concepts of regression analysis and vector calculus to the machine				
	learning models.				
	K4: Analyze the role of dimensionality reduction and density estimation for				
	machine learning problems				
	K5: Evaluate and test the significance of ma	achine learning results stati	istically.		

I	Introduction to Machine I coming using Duther		
	Introduction to Machine Learning using Python	13	
	Introduction to analytics and machine learning- Framework		
	for developing ML models- Python stack for data science -		
	Introduction to python.		
	Descriptive Analytics : Working with Data Frames in python -		
	Handling missing values - Exploration of data using visualization.		
II	Linear Regression	10	
	Simple Linear Regression - steps in building a regression		
	model- building simple linear regression model - model		
	diagnostics - multiple linear regression.		
III	II Classification Problems		
	Classification overview- Binary logistic regression- credit		
classification - classification tree - decision tree learning -			
	benefits of decision tree. Advanced Machine Learning		
	Introduction - Gradient Descent algorithm- Scikit-learn library		
	for ML- applying regularization - advanced machine learning	16	
	algorithms - dealing with Imbalanced datasets - Logistic		
	regression model - Support Vector Machine (SVM) - K-nearest		
	neighbours - Ensemble methods - Random Forest - Boosting -		
	Recommender Systems		
V	Introduction - datasets -Association Rules - collaborative	12	
filtering - user-based similarity - item-based similarity - using Surprise library.			
	Total Conduct Hours	64	

1. "Machine Learning with Python", U Dinesh Kumar, Manaranjan Pradhan, Wiley, 2020.

References:

- 1. "Machine Learning", Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson Education, 2018.
- 2. "Advanced Machine Learning with Python: Solve data science problems with state-of-the-art machine learning models", John Hearty, 2nd Edition, Packt Publishing, 2023.
- 3. "Pattern Recognition and Machine Learning", C. M. Bishop, 2nd ed, springer, 2011.
- 4. "Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow", Aurélien Géron, O'reilly Media, 2019.
- 5. "Machine Learning Engineering", Andriy Burkov, 2020.

E-resources:

- 1. http://nptel.ac.in/
- 2. https://www.pdfdrive.net/machine-learning-d31767902.html
- 3. https://ggnindia.dronacharya.info/Downloads/Sub-info/Related Book/4thSem/Fundamentals-of-AIML-text-book-4.pdf

Course	On successful completion of the course, the students will be able to
Outcomes	
	CO1: Understand the distribution and diversity of Data.
	CO2: Extract features useful for building predictive models.
	CO3: Understand the important learning algorithms pertaining to classification and regression.
	CO4: Design efficient algorithms with trained models, conduct experiments, and deliver ML-based applications.
	CO5: Understand the performance evaluation of learning algorithms and model selection.

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	3
CO2	3	2	2	1	2
CO3	3	3	2	1	2
CO4	2	3	2	2	3
CO5	3	2	3	1	3

Course Code	24CSUC4129			
& Title	Core Major - Lab 10: Machine Learning using Python			
			Credit: 1	
Class	B.Sc. (Computer Science)	Semester	VII	
Course	The Course aims to			
Objectives	 Understand the usage of .csv/ .xlsx files for organising data in the form of datasets. Introduce basic machine learning techniques. Design and analyze the performance of various machine learning algorithms. Identify suitable machine learning algorithms for solving real world problems. 			
Cognitive Level	K1 – K5			

Sl. No.	CONTENTS	Hours of Work
1.	 Familiarizing with Anaconda Jupyter / Google Colab for importing modules and dependencies for ML. Basic exercises on Python Machine Learning Packages such as Numpy and Pandas. Demonstrate various data preprocessing techniques like Handling missing values, Anomaly Detection. Demonstrate various Data Visualization Techniques using matplotlib. Implement covariance and correlation of attributes for a given dataset. Implement Simple and Multiple Linear Regression Models Develop Logistic Regression Model for a given dataset. Develop Decision Tree Classification model for give dataset to solve real-world problems. Build KNN and Naïve Bayes classification using python for a given dataset and identify correct and wrong predictions. Implement Random Forest ensemble method on a given dataset. Build Recommendation System for real-world datasets. 	48
	Total Conduct Hours	48

Course	On completion of the course, students will be able to			
Outcomes				
	CO1: Generate .csv files for organizing data in the form of datasets.			
	CO1: Implement and compare the performance metrics of various			
	machine learning algorithms.			
	CO1: Apply suitable data sets to the Machine Learning algorithms.			
	CO1: Outline predictions using machine learning algorithms.			
	CO1: Select appropriate algorithms for solving a of real-world problems			

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	3
CO2	3	2	2	1	2
CO3	3	3	2	1	2
CO4	2	3	2	2	3
CO5	3	2	3	1	3

Course Code & Title	24COUB4107 Core Minor - 7: Accounting for Decision Making			
		Credits:4		
Class	B.Sc. (Computer Science) Semester VII			
The syll	labus will be provided by the respective de	partment		

Course Code	24MAUB4108				
& Title	Core Minor - 8: Maths I: Mathematical Foundation for Computer				
	Science				
			Credits:4		
Class	B.Sc. (Computer Science)	Semester	VII		
	The syllabus will be provided by the respective department				

B.Sc. Computer Science (Honours) SEMESTER VIII

Course	24CSUC	4230			
Code & Title	Core Major - 19: Advanced Database Management Systems				
			Credits:3		
Class	B.Sc. (Computer Science)	Semester	VIII		
Course	The Course aims to				
Objectives	• Explore the emerging database	management systems a	and their		
	architecture and applications				
	 Provide an overview of NoSQL, its features, characteristics, 				
	paradigms and challenges				
	 Illustrate the usage of Mongo DB for a real time applications. 				
Cognitive	K1: Describe the architectures of the en	merging database systen	ns		
Level	K2: Understand the characteristics and applications of different data				
	models				
	K3: Choose the data models for real time applications.				
	K4: Analyze the NoSQL storage types and MangoDB				
	K5: Review the techniques used to criticize and improve the database				
	design	<u>-</u>			

UNIT	CONTENTS	Lecture Schedule
	Advanced Database Techniques and System Architecture	
I	Concept of Advanced Database Techniques, Impact of Emerging Database Standards. Database System Architecture: Overview –Centralized Database Systems Architectures –Server System Architectures - Parallel Systems –Distributed Systems –Transaction Processing in Parallel and Distributed Systems –Cloud-Based Services.	11
	Emerging Database Models, Technologies and	
	Applications	
	Emerging database Models, technologies and Applications— Object-Based Databases – NoSQL databases – Distributed	
II	databases – Parallel databases – Cloud databases – Multimedia databases – Personal databases – Operational databases – Enterprise databases – End User databases –	13
	Commercial databases – Graph databases – Open source	
	databases – OLTP databases – Document databases – Blockchain Databases.	
	Overview of NoSQL	
Ш	An Overview of NoSQL database –Defining NoSQL –What NoSQL is and what it is not –List of NoSQL Databases – Characteristics of NoSQL –RDBMS approach – Challenges –NoSQL approach.	12

	NoSQL Storage Types and Comparative Study	
	NoSQL Storage Types – Storage types – Column-oriented	
	databases – Document store – Key value store – Multi storage	
IV	type databases – Advantages and Drawbacks – Transactional	14
	application – Computational application – Web-scale	
	application. Comparative Study of NoSQL Products –	
	Technical comparison – Nontechnical comparison.	
	117. 1 DD	
	Working with Mongo DB	
	Working with MongoDB: Create Database – Create	
V	6 6	1./
V	Working with MongoDB: Create Database – Create	14
V	Working with MongoDB: Create Database – Create Collection – Insert Document – Find Data – Update	14
V	Working with MongoDB: Create Database – Create Collection – Insert Document – Find Data – Update Document – Query Operators – Update Operators –	14

- 1. Avi Silberschatz, Henry F.Korth, S.Sudarshan, Database System Concepts, 7th Edition, 2019
- 2. Ramez Elmasri and Shamkant B.Navathe, Fundamentals of Database Systems, Seventh Edition, Pearson Publication, 2018.
- 3. Gaurav Vaish, "Getting Started with NoSQL", Packt Publishing Ltd., 2013.

References:

- 1. Dan Sullivan, NoSQL for Mear Mortals, Pearson Publishing India Ltd., 2016.
- 2. Lee Chao, Database Development and Management, Auerbach Publications, 2010.
- 3. Sadalage, P. & Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Pearson Education, 2013.
- 4. Luc Perkins, Eric Redmond, Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement, 1st Edition, et al. O'Reilley Publishers, 2018.
- 5. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", 6th Edition, McGraw Hill International Edition, 2011.
- 6. Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens, :Principles of Database Management: Practical Guide to Storing, Managing and Analyzing Big and Small Data, Cambridge University press (1st Ed), 2018.
- 7. Martin Kleppmann: Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems (1st Ed), O'Reilly 2017.
- 8. Paul Done, Practical MongoDB Aggregations: The official guide to developing optimal aggregation pipelines with MongoDB 7.0, Packt Publishers, 2023.

E-Resource:

- www. w3schools.com
- https://www.geeksforgeeks.org/introduction-to-nosql/
- https://www.javatpoint.com/nosql-databases
 https://www.mongodb.com/docs/manual/tutorial/

Course	On successful completion of the course, the students will be able to
Outcomes	CO1: Revise the architectures of the emerging database systems
	CO2: Examine the types of database models, their technologies and its applications.
	CO3: Understand the concept of NoSQL databases, its features and characteristics.
	CO4: Analyze the NoSQL storage types and techniques to criticize and improve the database design.
	CO5: Have a practical experience to master the MongoDB.

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	2	3
CO2	3	3	3	2	3
CO3	3	3	2	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Course Code & Title	24CSUC4231 Core Major - Lab 11: Advanced DBMS			
	Credit:			
Class	B.Sc. (Computer Science)	Semester	VIII	
Course	The Course aims to			
Objectives	 Explore the creation and usage of NoSQL databases. Performing simple and complex database operations using Mongo DB. 			
Cognitive Level	K1 – K5			

Sl. No.	CONTENTS	Hours of Work		
1.	Create Database			
2.	Creation of Collection			
3.	Insert/Find/Update/Delete Documents			
4.	Using Query Operator and Aggregation Operations			
5.	Implementing Indexing and Searching on Documents	48		
6.	Performing Schema Validation	40		
7.	Operations using Data API			
8.	Working with Language Drivers			
9.	Data Visualization using Charts			
10	Connecting Databases to Server-side Web Frameworks			
	Total Conduct Hours	48		
Course	On completion of the course, students will be able to			
Outcomes				
	CO1: Design and create different types of databases			
	CO2: Perform basic and complex operations			
	CO3: Implementing validation, indexing and searching on databases			
	CO4: Usage of language drivers in databases			
	CO5: Designing and using databases for server-side framewo	orks		

CO Vs PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	3	3	3	2	3
CO2	3	3	3	2	3
CO3	3	3	2	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Course Code	24CSUC4232				
& Title	Core Major - 20: Deeping Learning for Computer Vision				
			Credits:3		
Class	B.Sc. (Computer Science)	Semester	VIII		
Course	The Course aims to				
Objectives	To acquire knowledge on the b	asics of neural networ	ks.		
	To impart skills on problem	formulation over de	ep learning		
	frameworks				
	To train on how to fine tune hy	per parameters of Dec	ep Learning		
	algorithms.				
	To study the fundamental con	cepts of computer vis	ion in deep		
	learning perspective.				
	To explore various deep learning architectures and transfer				
	learning.				
	To impart concepts that help identify suitable applications for				
	Generative Adversarial Networks				
	K1: Remembering the basic mathematical concepts				
	K2: Understand the mathematics be	ehind functioning of a	rtificial		
	neural networks				
Cognitive	K3: Apply the mathematics to deep	p learning models.			
Levels	K4: Analyze the given dataset for designing a neural network based				
	Solution				
	K5: Evaluating the Design and Imp	-	earning		
	models for signal/image proces	ssing applications.			

UNIT	CONTENTS	Lecture Schedule	
	Deep Learning		
I	Understanding Deep Learning and its application: Introduction to Deep Learning (DL) - DL Applications in various domains - Supervised and unsupervised learning - Multi-layer Perceptrons — Back propagation- Artificial Neural Networks - Activation function - Gradient Descent - Model training — over fitting - model deployment.	16	
	Convolutional Neural Networks		
П	Convolutional Neural Networks(CNN): Introduction to Deep Supervised Learning - Convolution & Pooling - Kernels - Dropout - LeNet - AlexNet - ZFNet - VGGNet - GoogleNet - ResNet - DenseNet and other State-of-theart CNNs.	12	
	Transfer Learning		
III	Transfer Learning: Transfer Learning Scenarios - Applications of Transfer Learning - Transfer Learning Methods - Fine Tuning and Data Augmentation.	11	
IV	CNN for Computer Vision		
	CNN for Computer Vision: Image Classification and Localization - Object Detection: R-CNN, F-RCN, YOLO - Semantic Segmentation - Instance Segmentation.	13	

	Deep Generative Models		
V	Introduction - Understanding Generative Adversarial Networks - Applications: Image Editing, Inpainting, Super	12	
	Resolution, 3D Object Generation, Security - Variants:		
	Cycle GANs, Progressive GANs, Stack GANs, Pix2Pix.		
	Total Conduct Hours		

- 1. "Deep Learning", Ian Good fellow, Yoshua Bengio and Aaron Courville, MIT Press, 2016.
- 2. "Deep Learning for Computer Vision Image Classification, Object Detection and Face Recognition in Python", Jason Brownlee, 2019.
- 3. "Deep Learning for Computer Vision with Python", Dr. Adrian Roseb rock, PyImage Search, 2017.

References:

- 1. "Fundamentals of deep learning", Nikhil Buduma, O'Reilly Media, 2017.
- 2. "Deep Learning for Computer Vision: Expert techniques to train advanced neural networks using Tensor Flow and Keras", Rajaling appaa Shanmugamani, Packt Publisher, 2018.

E-Resources:

- 1. http://nptel.ac.in/
- 2. https://github.com/tallamjr/iit-madras-DLCV
- 3. https://www.pdfdrive.com/search?q=deep+learning+for+computer+vision&pageco unt=&pubyear=&searchin=&em=

Course	On successful completion of the course, the students will be able to
Outcomes	
	CO1: Learn the fundamental principles of deep learning.
	CO2: Explore the essentials of Deep Learning and Deep Neural Network architectures.
	CO3: Evaluate the fundamentals of computer vision using deep learning.
	CO4: Choose appropriate Deep Learning algorithm with appropriate hyper parameter setting to solve the problem.
	CO5: Implement deep learning algorithms to solve real-world problems.

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	3	2	3
CO2	3	3	3	3	2
CO3	2	2	3	3	3
CO4	3	3	3	1	2
CO5	2	3	3	3	3

Course Code	24CSUC4233				
& Title	Core Major - Lab 12: Deep Learning and Computer Vision				
			Credit: 1		
Class	B.Sc. (Computer Science)	Semester	VIII		
Course	The Course aims to				
Objectives	 To Learn and apply Convergencessing. To Learn and apply Recurrent text analysis. 	 To learn deep neural networks and apply for simple problems To Learn and apply Convolution Neural Network for image processing. To Learn and apply Recurrent Neural Network and its variants for text analysis. To augment data using generative models 			
Cognitive Level	K1 – K5	•			

Sl. No.	CONTENTS	Hours of Work	
1.	1. XOR problem using Multilayer perceptron		
	2. Implement character and Digit Recognition using ANN.		
	3. Implement the analysis of X-ray image using auto encoders		
	4. Implement Speech Recognition using NLP		
	5. Develop a code to design object detection and classification for	48	
	traffic analysis using CNN	40	
	6. Implement online fraud detection of share market data using any		
	one of the data analytics tools.		
	7. Implement image augmentation using deep RBM		
	8. Implement Sentiment Analysis using LSTM. Mini Project		
Total Conduct Hours			

Course	On completion of the course, students will be able to					
Outcomes	CO1: Apply deep neural network for simple problems					
	CO2: Apply Convolution Neural Network for image processing					
	CO3: Apply Recurrent Neural Network and its variants for text analysis					
	CO4: Apply generative models for data augmentation					
	CO5: Develop a real world application using suitable deep neural networks					
1	-					

CO Vs PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	3	2	3
CO2	3	3	3	3	2
CO3	2	2	3	3	3
CO4	3	3	3	1	2
CO5	2	3	3	3	3

Course Code	24CSUC4234				
& Title	Project				
	Credits: 12				
Class	B.Sc. (Computer Science)	Semester	VIII		